
A Model for Fisheries Management
In 2018, 294,300 tonnes of fish were harvested in British Columbia valued at ~$1.3 Billion.  Proactively 

managing fisheries is therefore essential for the BC economy. 

Math is particularly necessary and well suited to study the dynamics of and manage populations. 
First, modelling allows us to test and optimize different management strategies.  

Second, biological populations naturally exhibit non-linear behaviour which can be unintuitive 

and hard to predict without modelling support.

Goal: Build a suite of models for managing a fish population with harvest.  

In conservation biology, we refer to the removal of individuals through hunting and fishing as “harvest”.

Some Preliminaries

I n [ ] : = MyCol=TableColorData["DarkBands"]
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I n [ ] : = Round[List @@@ MyCol * 255, 1]
Ou t [ ] =

{{164, 56, 76}, {177, 111, 65}, {227, 212, 100},
{77, 135, 68}, {59, 133, 172}, {82, 85, 141}}

I n [ ] : = PlotOptions = {Frame  True, FrameTicks  {{True, False}, {True, False}},
FrameStyle  Directive[Black, 12], LabelStyle  Directive[Black, 13]};

PlotTypes = {Plot, ListPlot, ListLogPlot, ListLinePlot, DiscretePlot, MatrixPlot};
Do[Map[SetOptions[x, #] &, PlotOptions], {x, PlotTypes}];

Question 1: How does the population grow in 

the absence of harvest? 

Consider a salmon population, salmon are anadromous meaning that they hatch in fresh water, travel 
to the ocean as juveniles and return to fresh water as adults to spawn.  Individuals of the same species 

(e.g., coho, chinook) return to their home streams simultaneously.  This results in synchronized repro-



duction. To model this synchrony in reproduction we use a discrete-time model, using recursion 

equations to describe the change in the population size from one year to the next.

To develop our intuition for the population dynamics, let’s start by considering first an unstructured 

model which ignores that fish may be in different developmental ages.

When we model population dynamics of dioecious species (species with two, or more, sexes) we 

model only the abundance of females as they are the ones who give birth (or lay eggs in the case of 
salmon). 

Suppose that the probability that an individual female reproduces in a given year is  b. 
Similarly, suppose that the probability that an individual dies in a year is d.  This probability d, 

increases with the number of individuals in the population due to competition.  If there are N(t) 

females in year t , the number in year t + 1 can be written as:

N (t + 1) N (t) + b N (t) - d N (t) (1 + α N (t))

where α is the increasing death rate with increasing population density.  

Question 1a: What are the long-term population size?
To figure out what happens in the long term, we want to ask when the population size is no longer 

changing (e.g., N (t + 1) N (t)).

N (t + 1) N (t) + b N (t) - d N (t) (1 + α N (t)) N (t)

I n [ ] : = Solve[{n + b n - d n (1 + α n)  n}, n]
Ou t [ ] =

{n  0}, n 
b - d

d α


Mathematica can perform symbolic math, which we can use to solve algebraic equations.

So we have two equilibria, first we have a case of n  0 and n 
b - d

d α
.  The first one is the case where 

the population goes extinct and the second one describes the carrying capacity of the population.

Question: Under what conditions does the population go extinct?

To answer this question, we want to know when is the extinction equilibrium stable. An equilibrium n  

of the recursion equation n (t) F (n(t - 1)) is stable if 
d F (n(t))

d n (t) n

< 1

Using Mathematica we can also take symbolic derivatives.
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I n [ ] : = F[n_] := n + b n - d n (1 + α n)

I n [ ] : = λ = Simplify[D[F[n], n] /. {n  0}]
Ou t [ ] =

1 + b - d

We want to know when λ 1 - b + d < 1. Even though this inequality is simple enough that we could 

manipulate it in our head, let’s use Matheamtica:

Using Mathematica we can also reduce  systems of inequalities.

I n [ ] : = Reduce[{λ < 1, 0 < d, 0 < b}, b]
Ou t [ ] =

d > 0 && 0 < b < d

So the extinction equilibrium is unstable if b < d (birth is less then death).  This makes sense! 

Question 1b: What are the transient population dynamics?
But what if we want to know about the transient dynamics?  We could try to solve for the general 
solution. But this is a non-linear recursion equation so like many non-linear recursion equations we 

don’t have a known general solution.  Rather let’s solve for the dynamics numerically, where we specify 

values for the parameters b, d and α and the initial condition N(0) .

I n [ ] : = pars1 = {b  0.2, d  0.12, α  0.02, n0  2};

I n [ ] : = Clear[nN]
nN[t_, pars_] := nN[t, pars] = If[t  0, n0 /. pars,

nN[t - 1, pars] + b nN[t - 1, pars] - d nN[t - 1, pars] (1 + α nN[t - 1, pars]) /. pars]

I n [ ] : = nN[0, pars1]
Ou t [ ] =

2

I n [ ] : = nN[1, pars1]
Ou t [ ] =

2.1504

I n [ ] : = nN[10, pars1]
Ou t [ ] =

4.05505

 Mathematica has flexible and high quality plotting tools
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I n [ ] : = leg1 = LineLegend[{Gray}, {"CarryingCapacity"}];
leg2 = PointLegend[{MyCol〚4〛}, {"Dynamics"}];

Show

(*Dynamics*)
ListPlot[Table[{t, nN[t, pars1]}, {t, 1, 100}], PlotStyle  MyCol〚4〛,
Frame  True, FrameLabel  {"Years", "Population Size"}],

(*Dynamics*)

Plot
b - d

d α
/. pars1, {t0, 0, 100}, PlotStyle  Gray,

Epilog  {Inset[leg1, Scaled[{0.75, 0.5}]], Inset[leg2, Scaled[{0.75, 0.4}]]}
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Question 1c: What if we include randomness in if 
individuals give birth or die?

The value of n(t)  in the deterministic model above can have values ranging from 0 to ∞, and is not 
constrained to be an integer.  In fact this quantity is actually a measure of population density not 
population size, and by modelling the system in this way.  If we want to force the population size to be 

an integer, we then have to consider the randomness in if individuals give birth or if individuals die.  

The result is a discrete-time discrete-space Markov process.  To model this let Xn(t) be the probabil-
ity that the population has size n at time t .  We can visualize how this probability changes using the 

diagram below.  We can represent this mathematically using a transition probability matrix where 

element Pi, j of this matrix is the probability that we go from having i individuals in time step t  to j  

individuals in time step t + 1.

I am not going to explain how we get the matrix P (for that you need to take Math 468 :) )
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I n [ ] : = QMtrx =

Table[If[i  j, -b i - d i (1 + α i), If[j  i + 1, b i, If[j  i - 1, d i (1 + α i), 0]]],
{i, 0, 40}, {j, 0, 40}] /. pars1;

I n [ ] : = {λList, eVecs} = Eigensystem[QMtrx] // Chop;

 Mathematica can perform matrix algebra both symbolically and numerically. 

I n [ ] : = AMtrx = Transpose[eVecs];
DMtrx = DiagonalMatrix[λList];
DMtrx1 = DiagonalMatrix[Exp[λList ]];
AMtrxInv = Inverse[Transpose[eVecs]];

I n [ ] : = PMtrx = AMtrx.DMtrx1.AMtrxInv // Chop;

Plotting the P matrix so we can see what it looks like

I n [ ] : = MatrixPlot[PMtrx, FrameLabel 

{{None, "To a popualtion size of:"}, {"From a population size of:", None}}]
Ou t [ ] =

10 20 30 40

10

20

30

40

F
ro
m
a
po
pu
la
tio
n
si
ze
of
:

To a popualtion size of:

We can use this matrix to numerically calculate the probability that the population has a size of n in any 

given generation.

I n [ ] : = nList = Table[n, {n, 0, 40}];

I n [ ] : = X0 = Table[If[n  n0 /. pars1, 1, 0], {n, 0, 40}];

I n [ ] : = Clear[X]
X[t_] := X[t] = If[t  0, X0, X[t - 1].PMtrx]
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I n [ ] : =

Show[MatrixPlot[Reverse[Transpose[Table[X[t], {t, 0, 100}]]],
ColorFunction  ColorData["ThermometerColors"]],

ListPlot[Table[nList.X[t], {t, 0, 100}], PlotStyle  MyCol〚1〛],
ListPlot[Table[{t, nN[t, pars1]}, {t, 1, 100}], PlotStyle  MyCol〚4〛],
FrameLabel  {"Years", "Population Size"}]

Ou t [ ] =
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Here the green is the deterministic solution, the red is the mean of the stochastic model, and the 

shading is the probability.  From this we can conclude stochasticity lowers population size and often 

leads to extinction!

 Mathematica can be used to run simulations

I n [ ] : = Clear[PMatrx]
PMatrx[pars_] := PMatrx[pars] =

Block{nMax, QMtrx, λList, eVecs, AMtrx, DMtrx, DMtrx1, AMtrxInv, PMtrx},

nMax = Round
b - d

d α
* 1.2 /. pars;

QMtrx =

Table[If[i  j, -b i - d i (1 + α i), If[j  i + 1, b i, If[j  i - 1, d i (1 + α i), 0]]],
{i, 0, nMax}, {j, 0, nMax}] /. pars;

{λList, eVecs} = Chop[Eigensystem[QMtrx]];
AMtrx = Transpose[eVecs];

DMtrx = DiagonalMatrix[λList];
DMtrx1 = DiagonalMatrix[Exp[λList ]];
AMtrxInv = Inverse[Transpose[eVecs]];
PMtrx = Chop[AMtrx.DMtrx1.AMtrxInv];
PMtrx



I n [ ] : = pars1 = {b  0.2, d  0.12, α  0.02, n0  5};
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I n [ ] : = Clear[sim]
sim[pars_, tMax_, intS_] :=
sim[pars, tMax, intS] = Block[{out, P, t, nList}, P = PMatrx[pars];

nList = Table[n - 1, {n, 1, Length[P]}];
out = {{0, n0 /. pars}};
For[t = 1, t ≤ tMax, t++,
AppendTo[out, {t, RandomChoice[P〚out〚-1, 2〛 + 1〛  nList]}]

];
out

]

I n [ ] : = sims = Table[sim[pars1, 100, intS], {intS, 0, 50}];
extinct = Select[sims, #〚-1, 2〛  0 &];
extant = Select[sims, #〚-1, 2〛 > 0 &];

I n [ ] : = ShowListLinePlot[extinct, PlotStyle  Directive[MyCol〚1〛, Opacity[0.1]]],

ListLinePlot[extant, PlotStyle  Directive[MyCol〚4〛, Opacity[0.1]]],
ListLinePlot[extinct〚1〛, PlotStyle  MyCol〚1〛],
ListLinePlot[extant〚1〛, PlotStyle  MyCol〚4〛],

PlotRange  All, Epilog  Inset"Proportion extinct: \n" <>

ToString
Length[extinct]

50
* 100.0 <> "%", Scaled[{0.13, 0.9}]
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Question 2: What is the effect of a constant 
versus proportional on population dynamics 

and extinction potential?  
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Constant Harvest
A constant harvest means that we remove a fixed number of individuals every year regardless of the 

current population size.  This is somewhat like fishing licenses.  Although the number of fishing licenses 

provided is often based on some estimate of population size, the size of the population is not con-
stantly monitored and estimates can be incorrect or out of date. 

To implement this in our recursion equation we included a constant removal H

N (t + 1) N (t) + b N (t) - d N (t) (1 + α N (t)) -H

I n [ ] : = pars2 = {b  0.2, d  0.12, α  0.02, n0  5, hc  0.04};

I n [ ] : = Clear[PMatrxConst]
PMatrxConst[pars_] := PMatrxConst[pars] =

Block{nMax, QMtrx, λList, eVecs, AMtrx, DMtrx, DMtrx1, AMtrxInv, PMtrx},

nMax = Round
b - d

d α
* 1.2 /. pars;

QMtrx = TableIfi  j, -b i - d i (1 + α i) - hc i
1

5 , Ifj  i + 1, b i,

Ifj  i - 1, d i (1 + α i) + hc i
1

5 , 0, {i, 0, nMax}, {j, 0, nMax} /. pars;

{λList, eVecs} = Chop[Eigensystem[QMtrx]];
AMtrx = Transpose[eVecs];

DMtrx = DiagonalMatrix[λList];
DMtrx1 = DiagonalMatrix[Exp[λList ]];
AMtrxInv = Inverse[Transpose[eVecs]];
PMtrx = Chop[AMtrx.DMtrx1.AMtrxInv];
PMtrx



I n [ ] : = Clear[sim2]
sim2[pars_, tMax_, intS_] :=
sim2[pars, tMax, intS] = Block[{out, P, t, nList}, P = PMatrxConst[pars];

nList = Table[n - 1, {n, 1, Length[P]}];
out = {{0, n0 /. pars}};
For[t = 1, t ≤ tMax, t++,
AppendTo[out, {t, RandomChoice[P〚out〚-1, 2〛 + 1〛  nList]}]

];
out

]
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I n [ ] : = sims2 = Table[sim2[pars2, 100, intS], {intS, 0, 50}];
extinct2 = Select[sims2, #〚-1, 2〛  0 &];
extant2 = Select[sims2, #〚-1, 2〛 > 0 &];

I n [ ] : = ShowListLinePlot[extinct2, PlotStyle  Directive[MyCol〚1〛, Opacity[0.1]]],

ListLinePlot[extant2, PlotStyle  Directive[MyCol〚4〛, Opacity[0.1]]],
ListLinePlot[extinct2〚1〛, PlotStyle  MyCol〚1〛],
ListLinePlot[extant2〚1〛, PlotStyle  MyCol〚4〛],

PlotRange  All, Epilog  Inset"Proportion extinct: \n" <>

ToString
Length[extinct2]

50
* 100.0 <> "%", Scaled[{0.18, 0.85}]
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Proportional Harvest
A proportional harvest means that we remove individuals in direct proportion to the population size.  
This is much more like line fishing, as the few fish there are the fewer bites there are on the line.
To implement this in our recursion equation we included a removal h*N

N (t + 1) N (t) + b N (t) - d N (t) (1 + α N (t)) - h*N (t)

I n [ ] : = pars3 = {b  0.2, d  0.12, α  0.02, n0  5, hc  0.1};
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I n [ ] : = Clear[PMatrxProp]
PMatrxProp[pars_] := PMatrxProp[pars] =

Block{nMax, QMtrx, λList, eVecs, AMtrx, DMtrx, DMtrx1, AMtrxInv, PMtrx},

nMax = Round
b - d

d α
* 1.2 /. pars;

QMtrx = TableIfi  j, -b i - d i (1 + α i) -
hc

nMax
i, Ifj  i + 1, b i,

Ifj  i - 1, d i (1 + α i) +
hc

nMax
i, 0, {i, 0, nMax}, {j, 0, nMax} /. pars;

{λList, eVecs} = Chop[Eigensystem[QMtrx]];
AMtrx = Transpose[eVecs];

DMtrx = DiagonalMatrix[λList];
DMtrx1 = DiagonalMatrix[Exp[λList ]];
AMtrxInv = Inverse[Transpose[eVecs]];
PMtrx = Chop[AMtrx.DMtrx1.AMtrxInv];
PMtrx



I n [ ] : = Clear[sim3]
sim3[pars_, tMax_, intS_] :=
sim3[pars, tMax, intS] = Block[{out, P, t, nList}, P = PMatrxProp[pars];

nList = Table[n - 1, {n, 1, Length[P]}];
out = {{0, n0 /. pars}};
For[t = 1, t ≤ tMax, t++,
AppendTo[out, {t, RandomChoice[P〚out〚-1, 2〛 + 1〛  nList]}]

];
out

]

I n [ ] : = sims3 = Table[sim2[pars3, 100, intS], {intS, 0, 50}];
extinct3 = Select[sims3, #〚-1, 2〛  0 &];
extant3 = Select[sims3, #〚-1, 2〛 > 0 &];
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I n [ ] : = ShowListLinePlot[extinct3, PlotStyle  Directive[MyCol〚1〛, Opacity[0.1]]],

ListLinePlot[extant3, PlotStyle  Directive[MyCol〚4〛, Opacity[0.1]]],
ListLinePlot[extinct3〚1〛, PlotStyle  MyCol〚1〛],
ListLinePlot[extant3〚1〛, PlotStyle  MyCol〚4〛],

PlotRange  All, Epilog  Inset"Proportion extinct: \n" <>

ToString
Length[extinct3]

50
* 100.0 <> "%", Scaled[{0.18, 0.85}]
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