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Assignment1

February 1, 2024

1 Assignment 1: Solutions

All problems have an equal weight of 10pts each. Each assignment is equally weighted.

import numpy as np
import matplotlib.pyplot as plt
import math

1.1

1. Infectious Disease Testing

A new infectious disease has emerged, and a diagnostic test has been developed to
identify individuals who are infected. The test is not perfect and can yield both false
positives and false negatives. You are given the following information:

The prevalence of the disease in the population is 5%, meaning that 5% of indi-
viduals are actually infected.

The sensitivity of the test is 90%, which means it correctly identifies 90% of
infected individuals as positive.

The specificity of the test is 85%, which means it correctly identifies 85% of
uninfected individuals as negative.

Part A. [4pts] Given that an individual tests positive, what is the probability that
they are truly infected? Use Bayes’ theorem to calculate this quantity which is known
as the positive predictive value (PPV). Is this a high or low PPV?

We want to calculate the probability an indivdiual is infected I given that they test postiive P,
Pr(I|P). Using Bayes’ theorem we have:

Pr(P|I)Pr(I)

Pr(I|P) = =T

From the prevenlence of the infection we have that Pr(I) = 0.05.

From the senstativity of the infection we have that Pr(P|I) = 0.9

But to calculate the probability of a postive test we have to use the law of total probability:

Pr(P) =Pr(P|I) Pr(I) + Pr(P|I’) Pr(I’)
=0.9 x 0.05 + (1 — 0.85) (1 — 0.05)

where I’ indicated not infected.
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(0.9%0.05)/(0.9%0.05+0.15%0.95)
0.24000000000000002

The positive predictive value of Pr(I|P) = 0.24 or 24% which is quite low!
Grading: 2pts for equation, 1pt for positive predictive value, 1pt for interpretation

Part B. [4pts] Given that an individual tests negative, what is the probability that
they are truly uninfected? Use Bayes’ theorem to calculate this negative predictive
value (NPV). Is this a high or low NPV?

We want to calculate Pr(I’|P"). Using Bayes’ theorem we have:

0.85 0.95
—_——

pr1) PP P

N — e’
0.05x0.14+0.95x0.85

0.85%0.95/(0.85%0.95+0.05%0.1)
0.9938461538461538

This is a fairly high negative predictive value.
Grading: 2pts for equation, 1pt for value, 1pt for interpretation

Part C. [2pts| Discuss the impact of test sensitivity and specificity on the accuracy of
diagnostic tests, especially in the context of infectious diseases.

These results show that for can seem to be a fairly sensitive and specific test that the utility of the
test, particularly for finding infected cases, which are inherently rare, is limited. Having 5% of the
population infected at any one time is a very high prevalence of the disease, the results will be even
more stark for rare infections in which only a fraction of a percent of individuals are infected.

Part D. [2pts] Suppose that individuals are tested twice. Assuming that the accuracy
of the tests is independent, what is the probability that an individual is infected given
two negative test results? Discuss possible pros and cons of a multiple-testing design.

(1pt) We want to know Pr(I|P’P’). Let’s use Baye’s Theorem.

0.05
—_—~

Pr(P'P'|I) Pr(I)
Pr(P'P)

Pr(I|P'P’) =

Using the independence of tests we have:

0.9
Pr(P'P'|I) = Pr(P'|I) Pr(P'|I) = (1 — Pr(P[I))(1 — Pr(P|I)) = 0.12 = 0.01

Now the denominator
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Pr(P’P’) = Pr(P'P’'|I) Pr(I) + Pr(P'P’'|I’)Pr(I') = 0.12 % 0.05 + 0.852  0.95
Pr(P’|I’)2

This gives:

Pr(I|P'P’') = 0.00073
0.1%0.1%0.05/(0.1%0.1%0.05+0.85%0.85%0.95)

0.0007279344858962697

(Ipt) This dual sampling design dramatically decreases the frequency of false negatives (negative
even though you are infected). A con would be cost and the potential reduction in the total number
of people tested.

1.2 2. Genetic Inheritance and Probability

In genetics, the principles of probability are often used to understand the inheritance
of traits. Consider a specific genetic trait determined by a single gene with two alleles:
dominant (D) and recessive (d). In a population, 40% of individuals are homozygous
dominant (DD), 30% are heterozygous (Dd), and 30% are homozygous recessive (dd)
for this trait.

Part A. [3pts] What is the probability that a randomly selected individual exhibits
the dominant trait?

By definition of genetic dominance, the dominant trait will be expressed by both DD and Dd
individuals. So the probability is 0.4 4+ 0.3 = 0.7 or 70%.

Part B. [3pts] Given that two individuals heterozygous for this trait (Dd) mate and
have offspring, what is the probability that their child will express the dominant trait?

Drawing the Punnet Square we have:

D d
D YD Dc‘ 'Do“\'u\aﬂz Trok

d | v4 4s

75% of the offspring express the dominant trait
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Part C. [3pts] Consider a different co-dominant genetic trait determined by a sepa-
rate (unlinked) gene. In the focal population, 60% of individuals express the mutant
phenotype, 30% express the heterozygous phenotype, and 10% express the ancestral
phenotype. What is the probability that a randomly selected individual is heterozy-
gous for the first trait (Dd) and expresses the mutant phenotype (MM) for the second
trait?

By unlinked we mean that the genotype at the first gene and the genotype at the second gene are
independent. So we have:

Pr(Dd) x Pr(MM) = 0.3 x 0.6 = 0.18

0.3%0.6
0.18

Part D. [1pt] Discuss the importance of understanding and applying probabilities in
the field of genetics and how it can aid in predicting the likelihood of trait inheritance
and genotypic outcomes.

Probability, as illustrated above, plays an important role in genetic counselling. For example in
detecting the probability that an individual will develop a rare recessive disease or in informing
population-level differences in the occurrence of a disease such as sickle cell anemia.

1.2.1 3. Genetic Inheritance of a Recessive Trait

In the study of genetics, we often encounter situations where we need to model the
probability of specific genetic outcomes. Let’s consider a simple gene with two alleles,
a recessive (r) allele and a dominant (R) allele. An individual can inherit the allele
from either parent. The frequency of the ‘r’ allele in the population is given by p = 0.5.

Part A. [3pts] Define a random variable that represents the maternally inherited al-
lele. What are the possible outcomes of this random variable, and what are their
probabilities? This random variable is distributed according to what distribution?

(2pts) The maternally inherited allele can be either an ‘r” or an ‘R’ Let’s define a random variable:

X _ 1 /T'/
0 'R
(1pts) We have that Pr(X = 1) = 0.25 and hence Pr(X = 0) = 0.75. This is a Bernoulli random
variable and is distributed like X ~ Ber(0.25).

Part B. [4pts] Explain how you can model the inheritance of a recessive allele (r) from
both parents using a Binomial distribution. What does the r.v. represent in this case?
What are the parameters of the Binomial distribution in this context, and what do
they represent?

(2pts) Let’s define a r.v. giving the number of ‘r’” alleles inherited from both parents.



0 'RR’
X=<1 'Rr’ or 'rR’

2 rr’

(2pts) This r.v. is distributed according to X ~ Ber(N = 2,p = 0.25) where N is the number of
parents/chromosomes and p is the ‘success’ probability of inheriting the recessive allele.

Part C. [3pts] Calculate the probability that an individual inherits two recessive alleles
(rr), one from each from both parents for this trait.

We have:
Pr(X =2) = @) 0.25%(1 —0.25)272) = 0.125

4. Moment Analysis in Measuring Tree Height in a Forest In forest ecology, under-
standing the height distribution of trees is crucial for assessing forest structure and
biomass. Ecologists often use probability distributions to describe the distribution of
tree heights. Let’s consider a forest where tree heights follow a continuous probability
distribution, f(h), where h is the height of a tree in meters.

The probability density function for tree heights in this forest is given by:

f(h) = khe 02" for 0 < h < oo

Part A: [1pts] What is the value of where k7

Since f(h) is a probability distribution it must sum to 1 hence we have:

/ khe 0-2"dh =1
0

Using integration by parts (u=h v = ﬁe‘o'zh)

oo o 1
—0.2R|>®° _ —0.2h
k ( he |0 /0 09 e dh)

1

we have:

1
So k = 35
Part B: [2pts| Calculate the mean tree height.

Mean height is given by:

E[h] = / —e02hgp = —02h (_5 p2 _ 50.h —250.)| =10
25 25 ( ) .
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Part C: [2pts] Calculate the variance in tree height distribution.
The variance equals Var[h] = E[h?] — E[h]?

Finding E[h?] = fooo %6*0'2hdh = %e*% (—=5h® — T5h2 — 750h — 375())‘:0 =150
Hence the variance is 150 — 102 = 50

Part D: [3pts] Calculate the third moment (skewness) of the tree height distribution.
Discuss what the answers to A,B, and C tell you about the tree height distribution.

(2pt) Skew[h] = E[h3] — 3E[h?]u + 23 where p = E[h]
We have:
$ E[h™3]=3000 $

3000-3*150%10+2%10%**3

500

Skew[h] = 500

(1pt) The distribution is right skewed. This means that the mean is less than the mode. So most
trees have a DBH< 10. Given the mean and variance, there is a long right tail (large trees). So
most trees are small but a few are very large.

Part E: (2pt) Plot the distribution of tree heights

x_values = np.linspace(0, 50, 100)
y_values=x_values*np.exp(x_values*(-0.2))/25
plt.plot(x_values, y_values)

plt.xlabel ('DBH')

plt.ylabel('Prob. Density')

plt.title('Tree Height');
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Part F: (1pt) Suppose you want to compare the tree height distribution of this forest
to another forest. How could you use moments (mean, variance, skewness) to assess
and compare the ecological characteristics of these two forests based on tree height
data?

A comparison of the means will tell us about the total biomass in the forest. A comparison of the
variances will tell us about the amount of diversity in ages/health of the trees and the skew will
tell us about how many very large trees there are for example for logging.

5. Random number generation Part A: (4pt) Modify the python code from class to
generate a histogram of 500 exponentially distributed random numbers where \ = 1.
Show the resulting plot.

lam=1

from scipy.stats import expon

uList = np.random.rand(500)

xList=expon.ppf (ulist, scale=1/lam); #distriution is specified in terms of
wscale=1/lambda

np.mean(xList)

0.9792342456503971



[4]: plt.hist(xList, bins=30, density=True, alpha=0.5, color='red', edgecolor='red');
plt.xlabel('Waiting time')
plt.ylabel('Probability Density');
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Part B: (4pt) Use the built in function np.random.exponential to generate 500 random
numbers from an exponential distribution where \ = % Show the resulting plot.

[5]: lam2=0.5
random_numbers = np.random.exponential (scale=1/lam2, size=500)
plt.hist(random_numbers, bins=30, density=True, alpha=0.5, color='blue',,
~edgecolor="'blue');
plt.xlabel('Waiting time')
plt.ylabel('Probability Density');
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Part C: (2pt) Plot the distributions from part A and part B on the same plot and use
the result to compare the two distributions.

Grading: 1pt for plot, 1pt for comparison

[48]: plt.hist(xList, bins=30, density=True, alpha=0.5, color='red', edgecolor='red');
plt.hist(random_numbers, bins=30, density=True, alpha=0.5, color='blue',,
~edgecolor="'blue');
plt.xlabel('Waiting time')
plt.ylabel('Probability Density');
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Blue distribution has a larger mean and hence a lower probability of short waiting times and a
longer tail.

6. Challenge Question: Modelling Disease Incubation Periods Understanding the
incubation period of a disease is crucial in epidemiology, as it helps assess disease
transmission dynamics and develop effective control measures. Let’s consider a new
infectious disease with a known incubation period, 7" during which individuals are
infected, asymptomatic, but still infectious. The incubation period, denoted as follows
a continuous probability distribution with the following probability density function
(PDF):

Pr(T =t) = f(t) = 0.2 %% fort>0

Part A. [3pt] Calculate the cumulative density function (CDF) of the incubation pe-
riod, F'(t). What does the CDF represent in the context of this infectious disease, and
how can it be useful for epidemiologists?

(2pt) By inspection we have that this is an exponential distribution with rate A = 0.2 so the CDF
is known to be:

F(t)=1—e 02

10
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(1pt) This distribution tells us the probability that an individual is already symptomatic after being
infected for ¢ units of time.

Part B. [3pt] Calculate the probability that an individual exposed to the disease will
develop symptoms within the first 5 days (0 t 5). Use the CDF to find this proba-
bility.

This probabilitly is given by F(5)

1-math.exp(-0.2%5)
0.6321205588285577

Part C. [3pt] Calculate the mean and skew of the incubation period using the PDF.
What do these movements mean to imply about disease transmission and control
strategies??

(Ipt) The mean of an exponential distribution is simply % =1/02=5
(1pt) The skew of the exponential distribution is: 2

(1pt) This is how long we would “expect” it to take for a random individual to develop symptoms.
The large mean implies that there will be 5 days during which individuals can have ‘hidden trans-
mission” where they are transmitting the infection but aren’t yet feeling ill. Note however that the
distribution is right-skewed (the mean is larger than the mode). So while it is our best guess for
the time until any one individual is 5 days infected most individuals will develop symptoms sooner.

Part D. [1pt] Discuss the epidemiological relevance of using probability density and
cumulative density functions to model disease incubation periods. How can under-
standing these functions help in predicting disease spread, estimating outbreak sizes,
and planning public health interventions?

The PDF and CDF of the incubation period help us understand the efficacy of tests, for example
for contact tracing, when those tests require people to be symptomatic.
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