Midterm Review

Topic 1

- Define a trial, and random variables, and describe discrete/continuous probability distributions using PMF/PDF and CDFs
- Use probability rules to draw biological conclusions

- Describe one example of where each of the following distributions arises in ecology or evolution:
 - Discrete probability distributions
 - Poisson distribution
 - Bernoulli distribution
 - Binomial distribution
 - Continuous probability distributions
 - Normal distribution
 - Beta distribution
 - Exponential distribution
 - Gamma/Erlang distribution
- Define the moments and central moments of a probability distribution and derive the relationships between them. Use these definitions to draw biological conclusions using the distributions listed above.

• Sample randomly from any discrete and/or continuous probability distribution given its CDF.

Topic 2

- Describe different types of stochastic processes depending on their state and natural measurement of time. Give an example each from biology.
- Define the Markov property in discrete time
- Use a transition probability matrix to describe a discrete-time discrete-space Markov process (DTDS-MC)
 - List the properties of a transition rate matrix.
 - What is the definition of time homogenous process?
- Propose and justify a DTDS-MC model for a biological process.

- Characterize the states of a DTDS-MC as **transient**, **absorbing**, or **recurrent**. Use these mathematical characterizations of states to draw biological conclusions.
- Analyze a DTDS-MC and use these analyses to draw biological conclusions:
 - \circ $\,$ Use first-step analyses to find the absorption probabilities and time to absorption
 - Derive the stationary distribution
 - Numerical iterate a stochastic process

• Simulate DTDS-MC, calculate their moments through time and use these moments to draw biological conclusions

- Branching processes and their analysis
 - What is an example of a branching process?
 - Analyze branching processes using the probability of extinction
- Describe neutral genetic drift
 - What is the Wright-Fisher model?
 - What is the Moran model?

Topic 3

- Review the Exponential, Erlang, and Poisson distributions.
 - Show that the convolution of two exponential distributions (with the same rate) is an Erlang distribution with k=2.
- Define a Poisson process and describe:
 - The time to the next event
 - The time to the n^{th} event
 - \circ The total number of events in time T
 - The superimposition of two Poisson processes
 - The thinning of two Poisson processes
- Propose a Poisson process describing a natural system and use it to draw biological conclusions
- Define a compound Poisson process and derive its first two moments.

• Simulate a Poisson or compound Poisson process.

• Use a Gillespie simulation to simulate a biological process

Topic 4

- What is the Coalescent Process and what does it describe?
 - What does the i^{th} coalescent time represent and what is its distribution?
 - What is the expected value of T_i ?
 - What is the variance in T_i ?
 - Draw an appropriately scaled coalescent genealogy

- What is the relationship between coalescent times and population size?
- Describe the assumptions of the infinite sites model of mutation
 - What are three measures of genetic diversity in this model of mutation?

- Calculate the measures of genetic diversity from a given sample.
- What is the expected number of segregating sites in a sample?
- What is the expected number of pairwise differences in a sample?
- Simulate a coalescent process for a sample of size n with and without mutation.