The Coolescent as a modified Review of Const Rate Dist A) Exponential Dist \Rightarrow waiting time 1^{st} event $Pr(T=t) = \lambda e^{-\lambda t}$ $E[T] = \frac{1}{\lambda}$ $Var[T] = \frac{1}{\lambda^2}$

Poisson Process
continuous time
discrete state
B) Poisson Distrbution
># of events in
$$T=1$$
 time
 $Pr(N=k) = \frac{\lambda^{k} e^{-\lambda}}{k!}$
 $E[N] = \lambda$ $Var[N] = \lambda$

c) Erland Distribution -> waiting time to even k $Pr(T=t|k) = \frac{\lambda^{k} t^{k-1} - \lambda t}{(k \cdot 1)!}$ $E[T] = \frac{k}{\lambda} \quad Var[T] = \frac{k}{\lambda^{2}}$

Deriving the Erlang Dist
for
$$k=2$$

 $Pr(T|k=2) = \int_{\lambda}^{T} \lambda e^{-\lambda t_{1}} \lambda e^{-\lambda (T-t_{1})} dt_{1}$
 $= \lambda^{2} \int_{0}^{T} e^{-\lambda T} dt_{1} = \lambda^{2} e^{-\lambda T} \int_{0}^{T} 1 dt_{1}$
 $= \lambda^{2} e^{-\lambda T} \cdot T$
Convolution

Summary Statistics Overvices

Time to k uncestors $T_{n,k} = \hat{\Sigma} T_i$ (Time to the n-k cool event) $T_{5,1}$

$$\int Poisson Analog$$
Probability of k Ancesters at the γ

$$Probability = \frac{1}{\binom{k}{2}} \sum_{i=k}^{n} \frac{\binom{i}{2}\gamma}{\binom{i}{2}e} \frac{\binom{i}{2}}{\binom{i}{2}-\binom{i}{2}}$$