
Topic 1: Probability Distributions in Ecology and Evolution

Learning Objectives:

Define a trial, and random variables, and describe discrete/continuous probability distributions using PMF/PDF and CDFs

Use probability rules to draw biological conclusions

Describe one example of where each of the following distributions arises in ecology or evolution:

Discrete probability distributions

Poisson distribution

Bernoulli distribution

Binomial distribution

Geometric distribution

Continuous probability distributions

Normal distribution

Beta distribution

Exponential distribution

Gamma/Erlang distribution

Define the moments and central moments of a probability distribution and derive the relationships between them. Use these

definitions to draw biological conclusions using the distributions listed above.

Sample randomly from any discrete and/or continuous probability distribution given its CDF.

Lecture 1.1 Probability

Definitions

A trial is a natural occurrence or event (e.g., birth/death) or an experimental outcome (e.g., time to detection) that can have more

than 1 (possibly infinite) outcome. The set of possible outcomes of an experiment is called the sample space and is often denoted

as .

Example 1.1: Body mass

Body mass of a black bear. Sample space: . The largest black bear on record was recorded in New Brunswick

weighing approximately .

Discussion: What are some other examples of trials in ecology, evolution, and epidemiology? And what are their sample spaces?

We can graphically represent trials and sample spaces with Venn Diagram.
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Probability Properties

Probabilities of Mutually Exclusive Outcomes: Suppose a trial can result in one of a set, , of possible outcomes, . The

outcomes are said to be "mutually exclusive" and must satisfy

Probabilities of Complements: Consider a subset  of the sample space. Then:

Independent Outcomes: Consider two mutually exclusive subsets  and  of the sample space. Then:

Inclusion-Exclusion Rule: Consider two non-mutually exclusive subsets  and  of the sample space. Then:

Example 1.2: Breast cancer

The probability of developing breast cancer for women between the ages of 50-60 is 

1. What is the probability that 4 independent patients ALL develop breast cancer?

2. What is the probability that ANY of them develop breast cancer?
patient A OR patent B OR patent C Or Patient D

X x  i

 Pr(X =
i∈X

∑ x  ) =i 1

A ⊂ X

Pr(X = A) + Pr(X = A ) =C 1

A ⊂ X B ⊂ X

Pr(A ∩ B) = Pr(A) Pr(B)
Pr(A ∪ B) = Pr(A) + Pr(B)

A ⊂ X B ⊂ X

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(AB)

Pr(cancer) = 0.03

0.03 × 0.03 × 0.03 × 0.03 = 0.03 =4 8.1 × 10−7



3. What is the probability that ONLY one of them develops breast cancer?

(patient A AND not patent B AND not patent C AND not Patient D)

OR

(not patient A AND patent B AND not patent C AND not Patient D)

OR

...

Conditional Probability: Consider two events  and . The probability that  occurs given that event  occurred we have:

If  and  are independent then:

Total Probability:

Bayes' Theorem: Bayes' theorem gives a relationship between the conditional probabilities  and 

where  refers to the "model" and  refers to the "data"

Example: 1.3 Brest cancer cont.

The brca1 gene has two different variants, called alleles, individuals with the "mutant" allele have an increased probability
of developing breast cancer (the non-mutant allele is known as the "wild-type"). The probability of having the brca1 mutant
allele is . Suppose that carrying this allele doubles your chance of having breast cancer. From above, we have that the
probability of developing breast cancer is  (including both individuals with and without the brca1 allele).

1. What is the probability of developing cancer given that you carry the brca1 allele?

What do we know?

where  is the "wild-type".

What do we want to know?

0.03 + 0.03 + 0.03 + 0.03 = 0.12 = 12%

  

 

# of options

  (
1
4) ∗ 0.03 ∗ (1 − 0.03) ∗ (1 − 0.03) ∗ (1 − 0.03)

= 4 ∗ 0.03 ∗ (1 − 0.03) = 0.1093

A B A B

Pr(A∣B) =  

Pr(B)
Pr(AB)

A B

Pr(A∣B) =  =
Pr(B)

Pr(AB)
 =

Pr(B)
Pr(A) Pr(B)

Pr(A)

Pr(X = x) =  Pr(y) Pr(x∣y)
y∈Y

∑

Pr(A∣B) Pr(B∣A)

 =

posterior

 Pr(A∣B)  

 

marginal prob.

 Pr(B)
   Pr(B∣A)

likelihood

 Pr(A)

prior

A B

0.02
Pr(cancer) = 0.03

Pr(mutant) = Pr(M) = 0.02
Pr(cancer) = Pr(C) = 0.03

Pr(C∣M) = 2 Pr(C∣M )C

MC

Pr(C∣M)



Let's use the total probability:

Solving for :

So 2% of the population with the mutant allele has a 5.9% chance of developing cancer and 98% of the population with the wild

type allele has a 2.9% chance of developing cancer such that the population-wide probability of developing cancer is 3%.

2. A patient has breast cancer, what is the probability that that patient carries the brca1 mutant allele?

What probability are we looking for?

This is other conditional probability than what we have, so let's use Bayes' theorem:

Random Variables

A random variable, , is a real-valued function defined on the sample space, 

Random variables assign a numerical value to the outcome of a trial providing an ordering to the outcomes. If the range of the

random variable is finite or countably infinite the r.v. is discrete. If the range is an interval (finite or infinite) the r.v. is continuous.

Example: 1.4 fly survival

In an evolution experiment survival of a mutant fly is measured on day 5.

1. What are the possible outcomes of this trial?

"survive" and "die"

2. What would be a reasonable r.v. for this case?

3. Is this a discrete or continuous r.v.?

discrete

Example 1.5: DBH

Tree growth is often measured by the trunk "diameter at breast height" (DBH)

1. What are the possible outcomes of this trial?

min diameter  and max diameter  (from a giant sequoia)

2. What would be a reasonable r.v. for this case?

Pr(C) = Pr(M)  +
x

 Pr(C∣M) Pr(M )  

C

 x2
1

 Pr(C∣M )C

x

Pr(C∣M) =  =
2 Pr(M) + Pr(M )C

2 Pr(C)
 =

2 × 0.02 + (1 − 0.02)
2 × 0.03

0.059

Pr(M ∣C)

Pr(M ∣C) =  =
Pr(C)

Pr(C∣M) Pr(M)
 =

0.03
0.059 × 0.02

0.039

X S

X : S → R = (−∞, ∞)

X =   {0
1

die
survive

= 0 ≈ 11m



3. Is this a discrete or continuous r.v.?

continuous

Let  be an outcome of the experiment. We will use the shorthand  to denote the event . In

other words, we will refer to an event by its value as a random variable. Given that the r.v. also gives an ordering to the events we

will also use the shorthand:  to denote the set of events 

Example 1.6: Three-spine Stickleback Armour

Three-spine Sticklebacks are small fish that live in lakes throughout British Columbia and the Pacific coast. A key trait of
these fish is the amount of skeletal armour they have. Skeletal armour is controlled by the Eda gene. If an individual has
two copies of the 'C' allele at this locus and hence is heavily armoured. If they have one 'C' and one 'l' allele or two 'l'
alleles they are lightly armoured.

1. Define a r.v. describing the genetics of this system
Let's define the r.v. by counting the number of 'C' alleles

2. Express the probability that an individual is heavily armoured?

3. Express the probability that an individual is lightly armoured?

Lecture 1.2 Discrete Distributions

Definitions

The cumulative distribution function (cdf) of a random variable  is a function  defined by:

Suppose  is a discrete r.v., then the function  is called the probability mass function (pmf). Note that the

range of  is 

Suppose  is a continuous r.v. with cdf . Then the function  such that:

then the function  is known as the probability density function (pdf) of 

X = 0, 11[ ]

s ∈ S X = x {s : X(s) = x, s ∈ S}

X ≤ x s : X(s) ≤ x, s ∈ S

X =    ⎩⎨
⎧0

1
2

ll
Cl
CC

Pr(X = 2)

Pr(X ≤ 1)

X F : R → 0, 1[ ]

F (x) = Pr −∞,x(( ])

X f(x) = Pr(X = x)
f(x) 0, 1[ ]

X F f : R → 0, ∞[ )

F (x) =  f(y)dy∫
−∞

x

f(x) X



Joint Probability Distributions

Some trials result in a pair of outcomes, . In such cases, the trial is described by the joint probability distribution of 

and .

Discussion: What are examples of biological trials with paired outcomes?

Useful Probability Distributions

Each experiment technically has its own unique sample space and corresponding probability distribution. Many of these

"empirical distributions" are very similar and it can be useful to approximate them with one of a set of standard distributions with

known properties. Below are some such distributions, as such each of these distributions is described by an idealized experiment.

Wikipedia is a useful resource for probability distributions, we will discuss distributions used throughout the rest of this course and

some of their most useful properties

1. The Poisson Distribution 

Motivation: If events occur randomly at a constant rate , the probability that  events occur in one unit of time is Poisson

distributed.

Domain: 

Parameters:  Note: Rates must be greater than 0

PMF: 

The Poisson distribution has the unique property that its mean equals its variance:

Mean: 

Variance: 

(X,Y ) X

Y

X ∼ P(λ)

λ x

X ∈ N

λ ∈ R+

Pr(x) =  

x!
λ ex −λ

λ

λ



2. The Bernoulli Distribution 

Motivation: Consider a binary trial with sample space of a trial is  where the probability of a success ( ) is ,

then the outcome of the trial is Bernoulli Distributed

Domain: 

Parameters: 

PMF:

Discussion: What do you think the PME of a Bernoulli distribution with  looks like?

Mean: 

Variance: 

Example: 1.7 Tongue Rolling

Tongue rolling is a dominant trait determined by a single gene with two alleles, (0: no roll, 1: roll).

We often denote the two alleles as 'A' and 'a'. By being dominant we have:

AA: Roll, Aa: Roll, aa=Flat

1. Suppose your father is heterozygous for tongue rolling, what is the probability that you inherit the dominant allele?

By the principle of random segregation which of your father's alleles you inherit is random. So .

2. Suppose both your parents are heterozygous for this gene. What is the probability that you can roll your tongue?

To understand this we have to build what is known as Punnett Square.

X ∼ Ber(p)

X = {0, 1} x = 1 p

X ∈ {0, 1}

p ∈ 0, 1[ ]

p = 0.25

Pr(x) =   {1 − p

p

if x = 0
if x = 1

p

p(1 − p) = pq

p = 0.5



3. The Binomial Distribution 

Motivation: The number of successes, , among  Bernoulli trials with success probability  is binomially distributed

Domain: 

Parameters: 

PMF: 

Mean: 

Variance 

Example: 1.8 Mendel's Peas

Peas have 4 chromosomes (this is why they were so good for Mendel to study). Mendel studied 1 trait per chromosome
(wrinkly/smooth, pink/white, etc. The principle of independent assortment states that whether you pass on your mom's or
your dad's chromosome is independent between chromosomes.

1. What is the probability that a pea plant passes on all of its mom's chromosomes to its offspring (note: we are ignoring
recombination here)?

The probability of passing on any one of the mom's chromosomes is . Hence the number of material chromosomes

inherited, , is Binomially distributed with  and 

2. What is the probability that YOU pass on  of your mom's chromosomes?
Humans have 23 chromosomes

Lecture 1.3 Continuous Distributions

Useful Probability Distributions Cont.

1. Normal Distribution 

p = 0.75

X ∼ B(n, p)

X n p

X ∈ {0, 1, … ,n}

p ∈ 0, 1[ ]

Pr(x) =  p (1 −(
x
n) x p)n−x

np

np(1 − p) = npq

p = 0.5
X n = 4 p = 0.5

Pr(X = 4) =  0.5 (1 −(
4
4) 4 0.5) =4−4 0.0625

x

Pr(X = x) =  0.5 (1 −(
x

23) x 0.5)23−x

X ∼ N (μ,σ)



Motivation: When there are many sources of errors in an experiment with a continuous outcome , the observed value  is

normally distributed around its expected value  with some variance  resulting from these cumulative effects.

Domain: 

Parameters: \quad 

PDF: 

CDF 

Mean: 

Variance 

The Standard Normal Distribution is a special case where  and .

Fig: Red shows mean, orange  and yellow . Note that  of the probability area falls in the  window.

2. Exponential Distribution 

Motivation: If events occur at a constant rate , the time until the next event occurs, , is exponentially distributed.

Domain: 

Parmaters: 

PDF: 

CDF: 

Mean: 

Variance: 

Skew  (the exponential distribution is right skewed meaning that it has a long right tail)

X x

μ σ2

X ∈ R

μ ∈ R σ ∈ R+

Pr(x) =  e
 σ2π

1 −  

2σ2
(x−μ)2

Pr(X ≤ x) =  Erfc  2
1 (

 σ2
μ−x)

μ

σ2

μ = 0 σ = 1

±1SD ±2SD ≈ 95% ±2SD

X ∼ Exp(λ)

λ X

x ∈ R+

λ ∈ R+

Pr(x) = λe−λx

Pr(X ≤ x) = 1 − e−λx

 

λ
1

 

λ2
1

2



The heterogeneous exponential distribution extends this to the case with a time-varying rate, . Its pdf is given by:

Example 1.9: Senescence

Not all organisms senesce, for example, brewer's yeast. Yeast cells die at an approximately constant rate throughout their
lives. If a yeast cell dies at a rate .

1. What is the expected lifespan of a yeast cell?

Life expectancy=mean waiting time to death=

2. How long would a yeast cell have to live to be considered "statistically" old?

How long does it take for 95% of yeast cells to die? In other words, we want:

using the CDF we have:

3. Erlang Distribution

Motivation: If events occur at a constant rate  the waiting time, , until the  event is Erlang distributed.

Domain: 

Parmaters: \quad 

PDF: 

Mean: 

Variance: 

λ(t)

Pr(x) = λ(x)e−  λ(t)dt∫0
x

λ =   3
1

days
1

 =
λ
1 3 days

Pr(X ≤ x) = 0.95

1 − e =−λx 0.95 ⇒ x = 8.99 days

λ X kth

X ∈ R+

λ ∈ R+ k ∈ Z+

Pr(x) =  

k!
λ x ek k−1 λ(−x)

 

λ
k

 

λ2
k



The Gamma Distribution extends this to allow for non-integer 

Example 1.10: Metamorphosis

Many organisms have distinct age classes (e.g., Caterpillar, butterfly). Suppose that the average time to metamorphosis for
a tadpole is 14 weeks.

1. Modelling the time to metamorphosis with an exponential distribution, how long does it take for 10%, 50%, 75%, and
95% of tadpoles to mature?

What is the value of ?

Solving we have 

2. Draw the distribution of times to maturity. What is the most likely maturation time (e.g., what is the mode of the
distribution)?

Discussion: Does this make sense?

3. Now model the time to maturation by including a hidden event (e.g., an Erlang distribution with ). How long does
it take 10%, 50%, 75%, and 95% of tadpoles to mature?

What is the value of ?

k

λ

λ =  =
14
1

0.071

CDF (x) = 1 − e =−λx Y Y = 0.1, 0.5, 0.75, 0.95

x = −λ
ln(1−Y )

k = 2

λ

2



you have to go twice as fast to make it through 2 events in the same amount of time.

4. Draw this distribution. What is the mode?

Mode : most common time to metamorphosis.

Discussion: Does this make sense?

4. Uniform Distribution 

Motivation: If the outcome of an event is random and bounded between a minimum  and maximum  value, this outcome is

uniformly distributed

Domain: 

Parameters: 

PDF: 

CDF: 

Mean: 

Variance: 

5. Beta Distribution 

λ =  =
14
2

0.14

≈ 7

X ∼ U(a, b)

a b

X ∈ a, b[ ]

a ∈ −∞, b( ]

Pr(x) =  

b−a
1

Pr(X ≤ x) =  

b−a
x−a

 2
a+b

 12
(b−a)2

X ∼ Beta(α,β)



Motivation: Consider  Bernoulli trials in which there were  successes. The probability that the true probability of success was 

given the data is Beta distributed with parameters  and .

Parameters:  & 

Mean: 

**Discussion:**What does each of these distributions mean in terms of the underlying binomial data?

Red: 1 success, 10 trials

Yellow: 10 successes, 100 trials

Blue: 5 successes, 10 trials

Example 1.11: Survival Probability

A researcher is running an experiment on pollution stress on Arctic Char. In two experimental sites (one polluted the other
not) each with 30 fish, they found that  fish in the polluted site perished over the summer while only  fish in the clean site
perished.

1. Draw the distribution of mortality probabilities in both sites

see below

2. What is the expected mortality probability in each site? Add these points to the plot.

see below

2. Draw the  Confidence Interval (CI) for the mortality probability in the polluted site.

n k x

α = k + 1 β = n − α + 2 = n − k + 1

α ∈ N β ∈ N

 

α+β
α

5 2

μ  =po  =30+2
5+1 0.1875

μ  =cl  =30+2
2+1 0.09375

95%



Lecture 1.4 Moments

Definitions

The PDF/PMF gives the full description of a distribution. But these functions can be cumbersome or may not have a known form.

Alternatively, a distribution can be defined by its moments. While to have a full description of the distribution we may need a lot

(possibly ) moments, like a Taylor Series we can often capture the major features of a distribution with only the first few

moments. To define a moment we first have to define an expected value.

Suppose  is a continuous random variable with pdf . Then the expectation of , denoted as , is defined as:

For a discrete r.v.  with probability function  we have:

This definition can be extended to include the expectation of a function of a random variable, 

Expectation Rules:

1. Constants

2. Addition/Subtraction

3. Powers

Example 1.12: Expectation Rules

What is ?

∞

X f(x) X E[X]

E[X] =  xf(x)dx∫
−∞

∞

X Pr(x)

E[X] =  xPr(x)
x∈S

∑

E[g(X)]

E[g(X)] =  g(x)f(x)dx∫
−∞

∞

E[aX] = aE[X]

E[X + Y ] = E[X] + E[Y ]

E[X ] =2
 E[X]2

E[x − 2x ]2

E[x − 2x ] =2 E[x] − 2E[x ]2



The First Moment: the Mean

The mean of a random variable, often denoted is its expectation.

Example 1.13: Mean of the Bernoulli Distribution

1. Consider the Bernoulli distribution, . Show that .

2. What is ?

Raw vs. Centered Moments

The  raw moment is the expectation of the  power of the r.v.

Moment Expression

First  (Mean)

Second

Third

We can also consider the second (and higher) raw moments of a jointly distributed outcome: 

The  centered moment is 

Moment Expression

First

Second  (Variance)

Third  (Skew)

We can also consider the second (and higher) centered moments of a jointly distributed outcome: 

 is called the covariance.

We can perform a change of variables to convert from centered to raw moments. For the second moment, we have:

Hence the second centered moment can be written in terms of the first and second raw moments.

For the third moment, we have:

μ  =X E[X]

X ∼ Ber(p) μ  =X p

E[X] =  =
x∈{0,1}xPr(x)

∑ 0 ∗ (1 − p) + 1 ∗ p = p

E[X − 2X ]2

E[x − 2x ] =2 E[x] − 2E[x ] =2 p − 2 0 ∗ (1 − p) + 1 ∗ p =( 2 2 ) −p

nth nth

E[x] = μ

E[x ]2

E[x ]3

E[x, y]

nth E[(x − μ) ]n

E[(x − μ)] = 0

E[(x − μ) ]2

E[(x − μ) ]2

E[(x − μ  )(y −x μ  )] =y

Cov(x, y)

  

E[(x − μ) ] =2

=

E[x − 2xμ + μ ] = E[x ] − 2E[x]μ + μ2 2 2 2

E[x ] − μ2 2

  

E[(x − μ) ] =3

=

E[x − 3x μ + 3xμ − μ ] = E[x ] − 3μE[x ] + 3μ E[x] − μ3 2 2 3 3 2 2 3

E[x ] − μE[x ] + 2μ3 2 3



Hence the third centered moment can be written in terms of the first second and third raw moments.

Example 1.14: Expected waiting time

Suppose that the time it takes a seed to germinate is exponentially distributed with rate . Show that the mean (expected)
time until germination is .

The PDF of the exponential distribution is:

The expectation then is:

To do this integral we use integration by parts: 

Example 1.15: Evolutionary rescue

Suppose you are running an evolution experiment where you expose  E. coli lines to stressful conditions and
monitor their ability to adapt. Suppose the probability of adapting before going extinct (known as evolutionary rescue) is

.

1. Use the definition of an expectation to show that the expected number of lines to be rescued is .

Shift the sum index by 1 (the first term is simply 0) and then write out the binomial coefficient

Let  and  then note that 

λ

 

λ
1

Pr(x) = λe−λx

E[X] =  xλe dx∫
0

∞
−λx

uv =∫ uv − vdu∫

u = x v = −e−λx

du = dx dv = λe dx−λx

  

E[X] =

=

=

−xe   −  −e dx−λx
0

∞ ∫
0

∞
−λx

−xe   −  e   

−λx
0

∞

λ

1 −λx

0

∞

(0 − 0) −  (0 − 1) =  

λ

1
λ

1

n = 10

p = 0.3

μ = np

  

E[x] =  x  p (1 − p)
x=0

∑
n

(
x

n) x n−x

  

E[x] =

=

=

0 +  x  p (1 − p)
x=1

∑
n

x!(n − x)!
n! x n−x

   p × p (1 − p)
x=1

∑
n

x
 (x − 1)!(n − x)!x

n(n − 1)! x−1 n−x

np   p (1 − p)
x=1

∑
n

(x − 1)!(n − x)!
(n − 1)! x−1 n−x

y = x − 1 m = n − 1 m − y = n − x



2. Given that the Bernoulli variance is , use the relationship between centered and raw moments to
derive the second raw moment of the Binomial Distribution

Solving we have:

Law of Total Variance

For random variable , , and 

In other words, the variance in an outcome is the average variance + the variance in the averages.

Example: Phenotypic Variance

A classic equation/assumption from quantitive genetics is that a phenotype (P) is equal to the genetic contributions (G) plus
the environmental contributions (E)

Suppose that a trait is determined by a single bi-allelic locus with genotypes "AA", "Aa", and "aa" such that the mean
phenotypes of the three genotypes are:

genotype mean pheno. frequency

AA 1 0.25

Aa 0.5 0.5

aa 0 0

But environmental noise adds variation about each of these means according to a normal distribution with mean 0 and
standard deviation 0.1.

1. What does the distribution of phenotypes look like in the whole population?

 

E[x] = np  = np

sum over a binomial dist=1

   p (1 − p)
y=0

∑
m

y!(m − y)!
m! y m−y

Var(X) = np(1 − p)

 

Var(x) = E[x ] − E[x]2 2

np − np = E[x ] − (np)2 2 2

E[x ] =2 np(np − p + 1)

X Y Z

Var(X) = E  [Var(X∣Z)] +Z Var  [E[X∣Z]]Z

P = G + E

P ∼ 0.25N (0, 0.1) + 0.5N (0.5, 0.1) + 0.25N (1, 0.1)



2. What is the mean phenotype?

The mean is completely independent of the environmental noise so we have

3. What is the phenotypic variance?

Let's start by calculating 

Plus the variance given the means 

Such that the total variance is 

Visualizing Moments

Let's compare some discrete (Bernoulli and Binomial) and continuous distributions (Normal and Erlang) with a small variance

(yellow) against those same distributions with the same mean but larger variance (blue).

E[P ] = 0.25 × 0 + 0.5 × 0.5 + 0.25 × 1 = 0.5

Var  [E[P ∣Geno]]Geno

  

Var  Geno

=

=

[E[P ∣Geno]]

0.25(0 − 0.5) + 0.5(0.5 − 0.5) + 0.25(1 − 0.5)2 2 2

0.125

E  [Var(P ∣geno)] =geno 0.12

0.135



What does 'Skew' mean? Skewness is a measure of the asymmetry of a probability distribution. A negative skew indicates that the

left tail of the distribution is longer or fatter than the right tail, and the bulk of the values is concentrated on the right side. In

other words, the distribution is skewed to the left (e.g. the green distribution below).

Right skewed distributions (blue curve) have a mean (dashed line) greater than the mode. For left skewed distributions (green

curve) the mean is less than the mode.

Lecture 1.5 Sampling From Probability Distributions

Programming in Python

Jupyter Notebooks are a powerful and interactive computing environment that allows you to create and share documents that

contain live code, equations, visualizations, and narrative text. The name "Jupyter" is a combination of three core programming

languages it supports Julia, Python, and R.

Key Features of Jupyter:

Interactive Computing: you can write and execute code in small, manageable sections called cells.

Multiple Language Support While Jupyter originated from the combination of Julia, Python, and R, it has grown to support a

wide range of programming languages.

Rich Text Support: In addition to code cells, Jupyter Notebooks support markdown cells (including latex), enabling the

inclusion of formatted text, equations, images, and hyperlinks.

Visualization: Jupyter integrates seamlessly with popular Python libraries.

Data Exploration: You can easily load and manipulate data using libraries like Pandas and NumPy. The ability to mix code

with narrative text makes it an excellent tool for data exploration and analysis.

Collaboration and Sharing: Notebooks can be exported to various formats, such as HTML or PDF, or shared online through

platforms like GitHub.

Jupyter at SFU

You can access Python and jupyter using the SYZYGY server

Python Arrays

In Python, the term "Python arrays" can be ambiguous because there are two main types of data structures that are commonly

referred to as arrays: Python lists and NumPy arrays.

Python Lists:

Python lists are a built-in data type in Python and are quite flexible. They can contain elements of different data types and

can dynamically grow or shrink in size.

Lists are versatile but may not be as efficient for numerical operations as NumPy arrays.

https://sfu.syzygy.ca/


Example: python_list = [1, 2, 3, 4, 5]}]

NumPy Lists:

NumPy is a powerful numerical computing library for Python. One of its key features is the NumPy array, a multi-

dimensional array object.

NumPy arrays are homogeneous and typically contain elements of the same data type, which allows for more efficient

numerical operations.

NumPy provides a wide range of mathematical functions that operate on entire arrays without the need for explicit loops.

Sampling from Focal Probability Distribution

Python: Lecture1_5.ipynb

Step 1: Sample a random number  from a uniform Distribution 

Step 2: create a mapping from this  to our focal distribution  by equating their CDFs such that:

So to draw a random variable,  from distribution  we have:

The inverse of the CDF is used so often that it has a name the Percentile Point Function (ppf).

Example 1.16: Ebola

There have been 12 significant Ebola outbreaks in the last 20 years.

1. Modelling the waiting time between outbreaks with an exponential distribution what is ?

2. What is the expected time until the next outbreak?

3. Given the random #  from , what is the corresponding random waiting time until the next outbreak?

4. The most recent outbreak started in September 2022 in Uganda. Simulate the sequence of the next 5 outbreaks and
draw them below.

Uniform Exponential Cumulative Time

 (4 mon)

x∗ X ∼ U(0, 1)

U(0, 1) D

CDF  (x ) =U
∗ CDF  (d )D

∗

x D

ppf(x) = y : cdf(y) = x

λ

λ =   =
20
12

years
1

0.6  

years
1

 =
λ

1
1.6 years 1year 8months6̄

u =∗ 0.612 U(0, 1)

ppf  (0.623) =exp 1.578 ≈ 1year 7months

u  =1 0.17 x  =1 0.327 t  =1 0.327



Uniform Exponential Cumulative Time

 (6.6 mon)

 (11.5 mon)

 (2 yr 4 mon)

 (5 yr 0.5 mon)

u  =2 0.129 x  =2 0.229 t  =2 0.556

u  =3 0.213 x  =3 0.399 t  =3 0.955

u  =4 0.562 x  =4 0.399 t  =4 2.83

u  =5 0.803 x  =5 2.17 t  =5 5.04


