
Topic 2: Discrete-Time/Discrete-State Markov Chains

Learning Objectives

Describe different types of stochastic processes depending on their state and natural measurement of time. Give an example

each from biology.

Define the Markov property in discrete time

Use a transition probability matrix to describe a discrete-time discrete-space Markov process (DTDS-MC)

List the properties of a transition rate matrix.

In this course, we will focus almost exclusively on time-homogenous processes, what does this mean and what is an

example of a time-dependent process?

Propose and justify a DTDS-MC model for a biological process.

Characterize the states of a DTDS-MC as \textbf{transient}, \textbf{absorbing}, or \textbf{recurrent}. Use these mathematical

characterizations of states to draw biological conclusions.

Analyze a DTDS-MC and use these analyses to draw biological conclusions:

Use first-step analyses to find the absorption probabilities and time to absorption

Derive the stationary distribution

Numerical iterate a stochastic process

Simulate DTDS-MC, calculate their moments through time and use these moments to draw biological conclusions

Branching processes and their analysis

What is an example of a branching process?

Analyze branching processes using the probability of extinction

Describe neutral genetic drift

What is the Wright-Fisher model?

What is the Moran model?

Lecture 2.1 Intro to DTDS Markov Chains

Characterization of Stochastic Processes

A stochastic process is a sequence of random variables , where the index of the sequence has the interpretation of time. The

state space of the stochastic process is the domain of  and the index  may either be discrete or continuous.
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Examples processes

1. Discrete-Time Discrete-Space Process

Branching processes are an example of a discrete-time discrete-state Markov process

Example: yeast

Budding or Brewer's Yeast Saccharomyces cerevisiae is an incredibly useful model organism for experimental evolution. As
implied by its name it is used to make beer and wine and divides by budding. Suppose that an evolution experiment begins
with a single yeast cell, each time step a yeast cell may either bud with probability  or die with probability . The
number of yeast at time step  is described by a discrete-time branching process.

What is the state space here?

number of yeast cells, , an integer

What is the time index here?

generations, , an integer
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Draw a transition diagram of this process

Draw an example Trajectory.

We call a single realization of a stochastic process a "trajectory"

2. Continuous Time Discrete Space Process

Birth-death processes are an example of continuous Time Discrete Space Process. These are mathematical models used to

describe ‘population’ dynamics, where each individual gives ‘birth’ (creating a new ‘individual’) at a rate  and dies at a rate 

over time. These processes find application in various biological contexts.

Example: emergent infectious diseases

The initial spread of infections can be described by a birth-death process where an "individual" is a case, "birth" is
transmission and "death" is recovery. The state space here is the number of infections. The state space is 

 where .
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Draw a determistic flow diagram and transition diagram of this process

Discussion: What are some other examples of birth-death processes? What is the individual and what is the "state space'' of

each? What do birth and death mean here?

2. Discrete-Time Continuous Space Process

We often use 'discrete-time' because of how data is collected. This is the case for First Order Auto-regressive Processes.

Example: wastewater

Detection of virus in wastewater has been widely used to monitor the prevalence of COVID-19, especially in the absence of
any other good case data. Rainfall and urban wastewater in Vancouver are not separated such that the amount of
wastewater entering a system changes day to day.

The amount of wastewater on day  can be modelled using a autoregressive process:

where  is some function, often assumed to be linear or polynomial, and  adds noise.

1. What is the state/time-space here?

State: the relative concentration of focal virus versus the control (pepper mosaic virus).

Time: days or weeks

2. Draw an example trajectory.

d = {1, 2...365}

X ​ =d f X ​ +( (d−1)) ϵ ​d

f(X) ϵ ​ ∼d N(0,σ)



3. Continuous Time Continuous Space Process

The Brownian motion model of trait evolution, also known as the Brownian motion model or the continuous random walk model,

is widely used in evolutionary biology to describe how a continuous trait evolves. This model is named after the concept of

Brownian motion in physics, where particles undergo random, continuous motion. In the context of trait evolution, the Brownian

motion model assumes the following:

The trait of interest is continuous and can take on a range of values, such as body size, beak length, or metabolic rate. It is

often assumed that the trait follows a normal distribution.

Trait evolution is driven by random neutral evolution. Hence this is a useful null model.

The change in the trait value at one point in time does not affect or predict the change at another point in time. In models

with multiple traits changes in one trait value are independent of the others.

The rate of trait evolution is constant over time. This means that the variance in trait values increases linearly with time.

The trait  can be describe by:

Figure from Symonds and Blomberg 2014

Markov Property

In this course, we are going to focus exclusively on Markov processes. The Markov property states that the future of the process is

determined solely by its present state and is not influenced by how it arrived at that state from previous states. For the discrete-

time Markov process  (here  is the state and  is the time step index) we have:

In other words, Markov processes don't have any "momentum".

We define the one-step transition probability as:

In addition to the Markov property, we will also mostly consider time-homogenous processes where this one-step transition

probability,  is independent of time, .

Discussion: What is an example of a stochastic process that is naturally Markovian? How about a process that is non-Markovian?

Most things in the real world are likely non-markovian, but they can often be well approximated by Markovian processes (with the

transition probabilities adjusted)

Drawing DTDS-MC graphically
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We can often draw a DTDS-MC as a graph. We represent each state with a circle and the probabilities  with arrows.

Example: 2.1 Species coexistence

In ecology, one common application of Markov chains is in modelling the (co)occurrence of species in a community. Let's
consider a simple example of a Markov chain modelling the coexistence of two hypothetical species Plant A and Plant B in
an ecological reserve.

State 1: Plant A only
State 2: Plant A and B
State 3: Plant B only

1. Draw this stochastic process assuming only one or zero species can be lost/gained in a given year.

The Transition Probability Matrix

A DTDS-MC can be represented by its transition probability matrix giving . Suppose , in this class

we will define the transition probability matrix as a square matrix with  (because of 0) rows and  columns that give

the probability of going from row/state  to column/state . We could switch how we label rows and columns but this choice will

be convenient for a few reasons.

We then represent the state of the system as a row vector, , giving the probability the system is in state  at time .

Example 2.2: Species coexistence cont

Let's assume the following transition rate matrix

1. What is the probability that the system goes from having both species (state 2) to only species A (state 1)?

2. What is the initial state vector assuming 30% of the ecosystems (e.g., marshes) start have only species A and 40% only
have species B?

The transition probability matrix has several useful properties:

1. All elements of  are non-negative

2. Row Sums:  (you have to go somewhere)

Discussion: Is this true for the example given above?
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3. Column Sums: : probability of transitioning to state  from all possible starting states }

4.  gives the  step transition probabilities from  to .

5. Chapman-Kolmogorov Eq.:

Example 2.3: Species coexistence cont

Python: Lecture2_1.ipynb

1. What is the probability that an ecosystem where both species currently coexist has only one species 2 years later, how
about 3 years later?

2. Use the Chapman-Kolmogorov equation to calculate the probability of being in state 1 (species A only) in 5 years.

Lecture 2.2 The Wright-Fisher Model

The Wright-Fisher Model

The Wright-Fisher model is a model of neutral genetic drift. It models a population with  gene copies as inherited across

discrete generations. Genes have one of two variant alleles,  or . The stochastic process then follows the number of  alleles

in the population, . Note that 

We often draw the WF model graphically in the following way.

Each offspring picks a parent at random. This ensures that parents can have several offspring (genes) but each offspring gene can

only have one parent.

We can represent the resulting process with the following transition diagram:

The transition probabilities of the WF model are given by the Binomial Distribution with success probability :

The value  here is known as the allele frequency or in other words, the frequency of the 'A' allele in the population.
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Note: a note on notation, in many cases the value of  in the above model is replaced with  to reflect that there are two

copies of each gene in a diploid individual. Hence using this alternative notation  is the number of individuals and  is the

number of genes. The equations given above are for the haploid model.

Example 2.4: Wright-Fisher Model

1. Consider a population with  haploid individuals, what does the transition probability matrix look like?
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2. Suppose that the population starts with an allele frequency of , what is the probability that the frequency is 
 in the next generation?

Note the other two most likely states to be in are  and .

3. Suppose that you start with 0 copies of the 'A' allele, what is the probability that you end up in each of the other states
in the next generation?

Discussion: why does this make sense?

Characterization of States

In a discrete-state discrete-time stochastic process, various characterizations can be assigned to individual states based on their

behaviour and properties within the process.

Absorbing State: An absorbing state is a state, , from which the process cannot leave once it enters. Once the process reaches

an absorbing state, it remains in that state indefinitely with probability 1. Absorbing states are often used to represent terminal or
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absorbing outcomes in a process.

A state is absorbing if:

Transient State: A transient state is one that, once entered, has a non-zero probability of eventually transitioning to an absorbing

state or reaching a terminal state. Transient states do not have a long-term impact on the process, and the process is expected to

leave them eventually.

A state is transient if:

Recurrent State: A recurrent state is one where, if the process enters it, it will return to that state with probability 1. A recurrent

state is revisited infinitely often.

Example 2.5: Wright-Fisher Model

1. In a haploid WF with  gene copies, characterize the states of the WF model as absorbing, transient, or recursive.

Absorbing  & 

Transient , to see this let's look at a , which tells us where the system will likely be after  generations.

There are no recurrent states

The Wright-Fisher Model with Mutation

We can add the possibility of mutation to this model by assuming that 'A' parents give rise to 'a' offspring with probability  and

'a' parents give rise to 'A' parents with probability . The new transition probabilities are given by:

Example 2.6: Wright-Fisher Model with Mutation

Consider a population with  haploid individuals with mutation probabilities 

1. What does the transition probability matrix look like?
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P =a,a 1

P ​ >i,a
k 0

N

X = 0 X = N

0 < X < N P k k

u

v

​ ​

P (X ​ = j∣X ​ = i) =t+1 t

=

​ ​(1 − u) + ​v ​(1 − v) + ​u(
j

N) (
N

i

N

N − i )
j

(
N

N − i

N

i )
N−j

​

B ​(N ,p(1−u)+(1+p)v)j

​​ (p(1 − u) + (1 − p)v) (1 − p)(1 − v) + pu(
j

N) j ( )N−j

N = 6 u = v = 0.05



Discussion: why does this compare to the case without mutation?

2. Characterize the states of this stochastic model.

All the states are recurrent.

Numerical Iteration

Given a initial state (row) vector of probabilities  we can use the transition probability matrix to iterate the probability through

time:

Example 2.7: Wright-Fisher Model

Consider a population with  haploid individuals and no mutation that starts with an allele frequency of 

1. What is the initial state vector?

We start with 3 copies of the 'A' allele.

2. What is the state vector in the next generation and the generation after?

3. What is the state vector after 20 generations?
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​ =X2 ​.P =X1 ​ ​ ​ ​ ​ ​[0.07 0.13 0.19 0.21 0.19 0.13 0.07]

​ =X20 ​.P =X0
20

​ ​ ​ ​ ​ ​[0.48 0.01 0.01 0.01 0.01 0.01 0.48]



4. Plot a heat map showing the dynamics over time.

Python: Lecture2_2.ipynb

4. Plot a heat map showing the dynamics of the WF model with mutation over time.

Lecture 2.3 First-Step analysis and the Stationary Distributions

First-step analysis

We can use the probability of going from  to  in a single step to learn about the probability of absorption and the time to

absorption. This approach is called first-step analysis.

Let  be the first hitting time of state .

Consider two different states 

Let  be the probability you hit  before you hit  given you start in state .

We have that:

providing a system for equations we can sometimes solve for .

Example 2.8: Wright-Fisher Model

In the (haploid) WF model without mutation, we have two absorbing states  and . What is the probability
that the  allele fixes given that we start with an allele frequency of ?
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Let  and  and hence  is the probability the system fixes given that we start with  copies of

the 'A' allele.

We have a system of equations:

Solving we have:

Discussion: Does this make sense? What do you think the probability of loss (i.e.  and ) looks

like?

We can use first-step analysis to learn about the time to absorption as well. Let  by the set of absorbing states of a stochastic

process. Let .

Let 

Example 2.9: Wright-Fisher Model

What is the time to fixation/loss in the WF model with population size  given you start with an allele frequency or
?
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Solving we have:

Stationary Distribution

Definition

The stationary distribution of a discrete-time, discrete-space stochastic process is a discrete probability distribution that remains

unchanged as the process proceeds over time. In other words, it represents the long-term behaviour of the process, and once

reached, it remains constant with each successive time step. The stationary distribution characterizes the probability of the process

being in each possible state, regardless of the initial state. It is analogous to the equilibrium of a deterministic system.

Formally, let's consider a discrete-time, discrete-space stochastic process with a finite set of states . The

stationary distribution for this process can be represented by the vector:  which must satisfy
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 represents the probability of the process being in state  in the stationary distribution hence we also have that

In simpler terms,  tells us the long-term proportion of time that the process is expected to spend in state i as it evolves.

Finding the Stationary Distribution

To find the stationary distribution of a discrete-time discrete-space stochastic process we solve the system:

Once we obtain the solution, always want to check that 

Example 2.10: Ecological state

Recall the model of species coexistence:

State 1: Plant A only
State 2: Plant A and B
State 3: Plant B only

With the transition prob. matrix

1. What is the stationary distribution of this system?

Solving we have: 

As an alternative to the balance equations, we can use eigenanalysis to find the stationary distribution. We want the long-term

outcome of the stochastic process, so:

for very large . Note that we can diagonalize the matrix . Where  is the matrix of eigenvectors (as columns), 

is a diagonal matrix of eigenvalues, and  is the inverse of .

Fortunately, it's easy to raise a diagonal matrix to a power:

We can order the eigenvalues in any way we want to so let  etc. Then for large  we have:
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Letting  be the leading (right) eigenvector and  be the leading (left) eigenvector we have.

So  is the stationary distribution when normallized so that 

Example 2.11: Wright-Fisher Model with mutation
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1. Find the stationary distribution of the WF model with mutation given .

We will use the eigenvector method to obtain:

2. Repeat this for .

Discussion: Does this make sense? What do you think would happen if ?

Lecture 2.4 Simulating a Stochastic Process
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Lecture 2.5 The Moran Process

Lecture 2.2 introduced the Wright-Fisher Model of genetic drift. Recall that in this model the population is characterized by

discrete generations, many populations however do not display synchrony in their reproduction and hence must be modelled

with overlapping generations. The Moran Model is the natural model for genetic drift in such populations.

Like the WF model, we begin by assuming that there are  haploid individuals/gene copies in the population. Each time step

one random individual reproduces and another random individual (can be the same as the one who gave birth) dies. Like the WF

model, we can show this process with a diagram.
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To build an analogy to the WF model, we define 1 generation as the time it takes for  individuals to be replaced or in other

words  time steps.

The transition rates in this model are much simpler than in the WF model. If there are currently  'A' alleles the probability that

there are  'a' alleles in the next time step is:

These can be derived by considering who is born and who dies.

Example 2.12: Moran Model
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Consider a population with  with an initial frequency of 

1. What does the transition matrix look like?

2. Characterize the states of this process.

Discussion: How does this compare to the WF model?

3. What is the probability that the population will have a frequency of  in the next time step? How about in the
next generation? How does this result compare to the WF model?

4. Simulate 100 trajectories in both the WF and Moran models. Compare them. For each trajectory, calculate the dynamics
of expected heterozygosity , how do these dynamics compare?

As  1 generation in the Moran model is many many tiny time steps and hence this model is effectively in continuous
time even though it is technically a discrete-time stochastic process.

Just like in the WF model, we can introduce mutation to this model. Suppose that once again focal 'A' individuals mutate to be 'a'

with probability  and that 'a' mutate to 'A' with probability .

Discussion: What do you think the transition probabilities are in this model?
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Example 2.13: Moran Model With Mutation
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1. Consider the same population with , and calculate the stationary distribution of the Moran process.

Discussion: How does this compare to the WF model?

2. Calculate the time until fixation/loss of an allele in this model. How does it compare to the WF model?

Lecture 2.6 Branching Processes

Definition

The "Galton-Watson" branching process, considers the number of individuals present in generation  is, :

1. Each individual in generation  gives birth to . In other words, the offspring distribution in generation  is given by:

2. Each individual gives birth independently and iid number of offspring (independent of all other individuals).

3. The same offspring distribution applies to all  generations (i.e. there is no density dependence)!

Example 2.14: Birth/Death

Suppose that each generation an individual can give birth with probability  giving rise to two individuals (itself and its
child), or die with probability . With probability  neither occurs.

1. What is the offspring distribution?

2. Simulate 500 Sample trajectories of this process with  and  given that 
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3. What is the distribution of , , and ?

4. Characterize the states of the branching process.

This process like all branching processes has one absorbing state  and all other states are transient.

As we can see in a branching process, many trajectories go extinct and a handful that do not. How do we calculate this probability

of extinction? Given that there is only one absorbing state the probability that the process goes extinct is after all 100%. But, if

enough births happen it may take a very very long time for this to occur. What then is the probability that the branching process

goes extinct in finite time?

Once again, the first step analysis comes to the rescue.

Define  as the probability that a single individual is alive in generation  and all of its subsequent descendants eventually go

extinct. By noting that the offspring distribution of each individual is independent we have:

This polynomial will have  roots. We can show that one of these roots will be .

Noting that  is a probability distribution we have .

One of the roots may also be real and , in which case this gives the probability that the process goes extinct in finite

time.

Example 2.15: Birth/Death Continued

1. Calculate the probability of extinction in this branching process
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Solving we have:

This tells us that if the probability of death is less than birth  there is a non-zero chance, ( ), that the population will not

go extinct in finite time.

2. How does this analytical result compare to your simulations?

In the simulations shown above 401 of 500 simulations have gone extinct by generation 50 or .

The analytical prediction is . Note that the distribution of lineage that have not gone extinct looks like this:

So the number of individuals present is usually large and hence none of these are likely to go extinct anytime soon.

While framed in a discrete-time context the concept of a branching process can be used to conclude events occurring

continuously through time by changing the meaning of the time index .

Specifically, let's redefine  as the  event.

Example 2.16: Birth-death process

Suppose that each individual gives birth at rate  and dies at rate .

1. What is the probability that an individual gives birth before it dies?

We will derive this more formally in the next lecture but:

2. What is the probability that an individual dies before it has an offspring?

3. Define a branching process describing the number of individuals in the population.

​ =ĝ 1 & ​ =ĝ ​

b

d

b > d 1 − ​ĝ

80.2

=ĝ ​ =0.25
0.2 0.8 = 80

n

n nth

λ μ
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λ ∗ n + μ ∗ n

λ ∗ n
λ + μ

λ

Pr(death) = d = ​ =
λ ∗ n + μ ∗ n

μ ∗ n
​ =

λ + μ

μ
1 − b



Let  be the number of individuals present in the population after the  event. Then the offspring distribution:

Note that, unlike the stochastic process above we do not have a  option because we are counting events.

4. What is the probability of extinction in this model?

Again let  be the probability that a single individual and its descendants go extinct. Then:

Solving we have  and . Since  is always  (assuming ) then we always have a non-zero probability that the

process does not go extinct.

To understand how this procedure can help us conclude the biological world. Let's consider the SIR epidemiological model

represented by the set of differential equations:

Here  is the the total population size.

We can derive the Basic Reproductive Ratio in this model by considering when .

The basic reproductive ratio apply to a emergent infectious disease where 

This tells us that in the deterministic model, the disease will go extinct if  and will spread when . Of course, the

world is not deterministic, particularly when the infection is rare.

Example 2.17: 

**Consider the classic SIR as defined above where there is a single initial infection . **

1. Propose a branching process that describes the early spread of the disease.

When the number of infections is small we can approximate the dynamics of the infection as a birth-death process where "births"

(new infections) occur at rate  and "deaths" (recovery) occurs at rate. Using the same logic as above, let the number of
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infections after the  event be  and the offspring distribution:

2. What is the probability that the emergent disease will go extinct?

From above we have that the probability of extinction is

So the probability of extinction is inversely proportional to the .

3. What is the probability that the emergent disease with  (similar to COVID-19 in early 2020) goes extinct?

 or a 33% chance of extinction or a 66% chance of emergence.

The basic SIR model above makes a critical assumption though that all individuals are equally likely to transmit the infectious

disease. This is certainly not the case. As with COVID, some events are known as super-spreading events where there is no pair-

wise infection but instead where a single infected host infects a large number of other individuals. This begs the question, how

does the presence of super-spreading events change the probability of epidemic emergence?

Example 2.18: Superspreaders

Consider a population in which 5% of events are super-spreading events where 3 individuals are infected and 2% of events
lead to 4 infections.

1. Express the early dynamics of the disease as a branching process.

Defining  we have

2. What is the probability of extinction given  and ?

Defining  as before we have:

Solving numerically, the one real root between  and  is . In other words, the probability of emergence is 

.

So introducing super spreading events increases the probability of emergence by 1.5%.

3. What if 99% of events are pairwise transmission but 1% are huge such that 10 individuals are infected?

Solving numerically we have that  so a 0.1% increase in the probability of emergence.

nth X ​n

Pr(Y = k) = ​ ​ ​⎩⎨
⎧b = ​

β+γ
β

1 − b

0

k = 2

k = 0
otherwise

​ =ĝ ​ =
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